Ero1–PDI interactions, the response to redox flux and the implications for disulfide bond formation in the mammalian endoplasmic reticulum
نویسندگان
چکیده
The formation of disulfide bonds between cysteine residues occurs during the folding of many proteins that enter the secretory pathway. As the polypeptide chain collapses, cysteines brought into proximity can form covalent linkages during a process catalyzed by members of the protein disulfide isomerase family. There are multiple pathways in mammalian cells to ensure disulfides are introduced into proteins. Common requirements for this process include a disulfide exchange protein and a protein oxidase capable of forming disulfides de novo. In addition, any incorrect disulfides formed during the normal folding pathway are removed in a process involving disulfide exchange. The pathway for the reduction of disulfides remains poorly characterized. This work will cover the current knowledge in the field and discuss areas for future investigation.
منابع مشابه
Ero1-α and PDIs constitute a hierarchical electron transfer network of endoplasmic reticulum oxidoreductases
Ero1-α and endoplasmic reticulum (ER) oxidoreductases of the protein disulfide isomerase (PDI) family promote the efficient introduction of disulfide bonds into nascent polypeptides in the ER. However, the hierarchy of electron transfer among these oxidoreductases is poorly understood. In this paper, Ero1-α-associated oxidoreductases were identified by proteomic analysis and further confirmed b...
متن کاملConservation and diversity of the cellular disulfide bond formation pathways.
Two pathways for the formation of biosynthetic protein disulfide bonds have been characterized in the endoplasmic reticulum (ER) of eukaryotes. In the major pathway, the membrane-associated flavoprotein Ero1 generates disulfide bonds for transfer to protein disulfide isomerase (PDI), which is responsible for directly introducing disulfide bonds into secretory proteins. In a minor fungal-specifi...
متن کاملGlutathione limits Ero1-dependent oxidation in the endoplasmic reticulum.
Many proteins of the secretory pathway contain disulfide bonds that are essential for structure and function. In the endoplasmic reticulum (ER), Ero1 alpha and Ero1 beta oxidize protein disulfide isomerase (PDI), which in turn transfers oxidative equivalents to newly synthesized cargo proteins. However, oxidation must be limited, as some reduced PDI is necessary for disulfide isomerization and ...
متن کاملGlutathione is required to regulate the formation of native disulfide bonds within proteins entering the secretory pathway.
The formation of native disulfide bonds is an essential event in the folding and maturation of proteins entering the secretory pathway. For native disulfides to form efficiently an oxidative pathway is required for disulfide bond formation and a reductive pathway is required to ensure isomerization of non-native disulfide bonds. The oxidative pathway involves the oxidation of substrate proteins...
متن کاملA small molecule inhibitor of endoplasmic reticulum oxidation 1 (ERO1) with selectively reversible thiol reactivity.
Endoplasmic reticulum oxidation 1 (ERO1) is a conserved eukaryotic flavin adenine nucleotide-containing enzyme that promotes disulfide bond formation by accepting electrons from reduced protein disulfide isomerase (PDI) and passing them on to molecular oxygen. Although disulfide bond formation is an essential process, recent experiments suggest a surprisingly broad tolerance to genetic manipula...
متن کامل